Introduction to inertial and integrated navigation:
• Inertial navigation principle, inertial navigation equation.
Reference Systems and Coordinate Transformations:
• rotations, coordinate systems, coordinate transformations, Transformation Matrix (MCD), derivative of an MCD, quaternion algebra, quaternions and rotations, derived from a quaternion).
Inertial Navigation Sensors:
• accelerometer, gyro, Ring Laser - Gyro).
Inertial Navigation Systems:
• platform systems: platform function, 3 and 4 axle platform, platform behavior, horizontal rotation, horizontal coordinate with geographic coordinates, vertical mechanization constraints, other mechanization).
• Strapdown systems (features, MCD with Euler angles, direct cosine calculation, MCD with quaternions, initial strapdown platform alignment).
• Inertial system errors (error state equation, linearization and resolution, measurement equation, examples).
Integrated navigation:
• Optimum estimation of one-dimensional quantity, discrete Kalman filter, relative examples, non-white noise system, examples).
Kalman Filter Applications: Extended Kalman Filter, loosely / tightly coupled in open / closed loop, realization of an integrated INS-GPS system.