Università degli Studi di Napoli "Parthenope"

Teaching schedule

Academic year: 
2017/2018
Belonging course: 
Course of Master's Degree Programme on MANAGEMENT ENGINEERING
Disciplinary sector: 
SYSTEMS AND CONTROL ENGINEERING (ING-INF/04)
Credits: 
9
Year of study: 
1
Teachers: 
AMBROSINO ROBERTO
Cycle: 
Second semester
Hours of front activity: 
72

Language

Course description

In agreement with so called "Dublin descriptors" qualifications that indicate completion of the results are awarded to students who: - have demonstrated knowledge and understanding in analysis of linear systems and control theory (knowledge and understanding); - can apply their knowledge and understanding in order to design a feedback controller for linear time-invariant systems starting from a set of requirements (applying knowledge and understanding); - have the ability interpret the effectiveness of a designed control system and the capability to change the control strategy in order to improve the results (making judgements) ; - can communicate information, problems and solutions related to the analysis of linear systems and design of feedback controllers to both specialist and non-specialist audiences (communication skills); - have developed those learning skills that are necessary for them to continue to undertake further study with a high degree of autonomy (learning skills).

Prerequisites

Linear Algebra, System Theory

Syllabus

An introductory course on control systems providing the students with the basic engineering knowledge of dynamic systems and feedback. After the course the student should be able to describe and explain how feedback mechanisms affect system properties such as stability, speed of response, precision, sensitivity and robustness. Furthermore, the student should be able to analyse and design feedback systems with respect to these properties.
COURSE CONTENTS: Representation of dynamic systems as a set of differential equation. State space model for linear system. Laplace transform. Transfer functions. Analysis of feedback control systems: Stability. Nichols, Nyquist and Bode diagrams. Speed of response. Robustness and sensitivity. Synthesis of simple control systems: Specifications. PID-controllers

Teaching Methods

Textbooks

D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Applications, John Wiley & Sons

Learning assessment

written and oral esam

More information